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Abstract 

One of advantages of adopting multi-period portfolio models is improved investment 

performance via the fixed mix rule, which is called rebalancing gains or volatility pumping. Due 

to its similarity to the “buy low, sell high” strategy, it is often misunderstood that it requires 

mean-reverting processes for assets. In this paper, however, we show that mean-reversion is not 

necessary to benefit from the fixed mix rule, via a simple multi-dimensional geometric Brownian 

motion. We also list practical examples which are successfully implementing the rule in the 

domain of equities, commodity futures, alternative investments, and momentum strategies. 
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INTRODUCTION 

There are a number of advantages of adopting multi-period models over traditional single-period, 

static models in portfolio managements [1]. One of more important benefits, among others, is 

improved performance on portfolio investments via the fixed mix rule [2-4]. The buy-and-hold 

rule, which represents single-period models, does not rebalance the portfolio at any intermediate 

juncture; hence the weight on each component might change as asset prices fluctuate in different 

proportions. In contrast, when a portfolio is constructed based on the fixed mix rule, it is 

rebalanced at every time point so that component weights remain the same as the initial state. In 

order to keep the weights unchanged, investors should sell assets whose prices have gone up, and 

buy ones whose prices have dropped. Therefore, in some sense, the fixed mix rule is analogous 

to the “buy low, sell high” strategy. Possibly due to such an analogy, there seems to be a widely 

spread misconception regarding the fixed mix strategy and its benefits – it requires mean-

reverting processes for assets. Of course, because of its nature, it is not hard to see that it would 

be helpful to have such processes to achieve better performance. However, the truth is that mean-

reversion is not necessary for the fixed mix to accomplish superior performance. 

 

THEORETICAL BACKGROUNDS 

We first recall performance of the buy-and-hold strategy. Suppose there are n stocks whose mean 

return is ݎ א Թ୬ and covariance matrix ߑ א Թ୬ൈ୬. Assuming normality, ݎ஻ு, the average buy-

and-hold portfolio return with weight ݓ א Թ୬, is normally distributed with mean ݎ்ݓ and 

variance  ߪ௣
ଶ ൌ  ,That is .ݓߑ்ݓ

,ݎ்ݓ஻ு~N൫ݎ ௣ߪ
ଶ൯ ؠ Nሺݎ்ݓ,  ሻ.          (1)ݓߑ்ݓ
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Next, let’s consider a fixed mix portfolio constructed from the same stocks with the same weight 

(w) as the previous buy-and-hold portfolio. Since it is rebalanced at every intermediate juncture, 

it is required to model stock prices as processes. Thus, we model them as an n-dimensional 

geometric Brownian motion whose return distribution for a unit time length would be the same 

as the previous case. Then, the price p f s e written as the following SDE. rocess o tock i can b

ௗௌ೟
೔

ௌ೟
೔ ൌ ቀݎ௜ ൅ ఙ೔

మ

ଶ
ቁ ݐ݀ ൅ ௧ܤ݀

௜,                (2) 

where ߪ௜
ଶ is the i-th diagonal term of ߑ (hence, variance of stock i) and for the Cholesky 

factorization of ܮ ,ߑ and the dar n iene  ሺ ௧
ଵ ڮ ௧ܹ

௡ሻ்,  stan d n-dime sional W r process ܹ

݀ሺܤ௧
ଵ ڮ ௧ܤ

௡ሻ் ൌ ሺ݀ܮ ௧ܹ
ଵ ڮ ௧ܹ

௡ሻ்.              (3) 

Since the fixed mix portfolio is rebalanced at each time point to the initial weight (w), its 

instantaneous growth rate is the same as the weighted sum of instantaneous growth rates of the 

stocks at any given juncture. Therefore, the SDE for the portfolio wealth can be written as 

ௗ௉೟
ಷಾ

௉೟
ಷಾ ൌ ∑ ௜ݓ

ௗௌ೟
೔

ௌ೟
೔

௡
௜ୀଵ ൌ ∑ ௜ݓ ቄቀݎ௜ ൅ ఙ೔

మ

ଶ
ቁ ݐ݀ ൅ ௧ܤ݀

௜ቅ௡
௜ୀଵ .

            (4) 

With simple algebra, one can show that, for the standard 1-dimensional Wiener process ௧ܹ , 

ௗ௉೟
ಷಾ

௉೟
ಷಾ ൌ ቀݎ்ݓ ൅ ଵ

ଶ
∑ ௜ߪ௜ݓ 

ଶ௡
௜ୀଵ ቁ ݐ݀ ൅ ௣ߪ

ଶ݀ ௧ܹ.      (5) 

Hence, the return of the fixed mix portfolio for a unit time length can be given as 

ܰ~ிெݎ ቀݎ்ݓ ൅ ଵ
ଶ

∑ ௜ߪ௜ݓ
ଶ௡

௜ୀଵ െ ଵ
ଶ

௣ߪ
ଶ, ଶቁߪ  ؠ ܰ ቀݎ்ݓ ൅ ଵ

ଶ௣ ∑ ௜ߪ௜ݓ
ଶ௡

ଵ െ ଵ
ଶ௜ୀ ,ݓߑ்ݓ ቁݓߑ்ݓ

.
 (6) 

Therefore, returns of both buy-and-hold (ݎ஻ுሻ and fixed mix (ݎிெሻ are normally distributed with 

the same variance (ߪ௣
ଶ), while the mean of the latter contains extra terms, ሺ∑ ௜ߪ௜ݓ

ଶ െ ௣ߪ
ଶ௡

௜ୀଵ ሻ/2. 

These extra terms, which are often referred to as rebalancing gains or volatility pumping, 

represent the value of having an option to constantly rebalance the portfolio to initial weights.  
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To observe its effects more closely, let’s consider the following simple example: suppose we 

have n stocks where the expected return and the volatility of each are r and ߪ, and the correlation 

is given as ߩ. Assuming the portfolio is equally weighted, the amount of the rebalancing gain, 

ܩܴ ൌ  ଵ
ଶ

൜∑ ଵ
௡

ଶ௡ߪ
௜ୀଵ െ ቀଵ

௡
ڮ ଵ

௡
ቁ ߑ ቀଵ

௡
ڮ ଵ

௡
ቁ

்
ൠ ൌ ሺ௡ିଵሻఙమሺଵିఘሻ

ଶ௡ .
   (7) 

Now it is evident that the fixed mix strategy has benefit over the static buy-and-hold rule, even 

without mean-reversion; the rebalancing gain is always positive, except the case that all stock 

returns are perfectly correlated, in which it becomes 0. Note that the rebalancing gain is an 

increasing function of the number of stocks (n) and the volatility (ߪ), and is a decreasing 

function of the correlation (ߩሻ. See Figure 1 for the illustrations of simulation results for the 

effects of ߪ, and ߩ to rebalancing gains. Therefore, with the wisdom from the portfolio theory, 

one can see that volatile stocks should not be penalized when a portfolio is constructed with the 

fixed mix rule, as long as their correlations to other stocks are low and they possess reasonable 

expected returns; they can serve as good sources of rebalancing gains. The portfolio risks can be 

effectively reduced via dynamic diversification. For more complete discussion, see [2-6].  

<Insert figure 1 about here> 

 

PRACTICAL EXAMPLES 

Under certain conditions, the fixed mix rule has been proved to be optimal in multi-period 

settings. Early on, Mossin [7] showed that it is the optimal strategy when an investor maximizes 

the expected power utility of her terminal wealth, assuming IID asset returns and no intermediate 

consumption. Samuleson [8] analyzed the problem in more generalized settings: Using an 
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additive inter-temporal power utility function of consumption over time, he proved that it is still 

optimal to adopt the fixed mix rule when the investor is allowed to consume at intermediate 

junctures. Merton [9] also concluded the same in the continuous time setting model. 

 

Indeed, there are many practical applications which are successfully taking advantage of 

rebalancing gains via fixed mix rules. Among others [10-12], one of good examples is the S&P 

500 equal-weighted index (S&P EWI) by Rydex Investments (see Figure 2) [13]. Unlike 

traditional cap-weighted S&P 500 index, it applies the fixed mix rule to the same stocks as S&P 

500, rebalancing them every six month to maintain the equally weighted portfolio. During 1994 

to 2005, S&P EWI earned 2% excess return with mere 0.6% extra volatility over S&P 500. This 

added profit is partially due to superior performance of small/mid-sized stocks but also can be 

accounted for by rebalancing gains.  

<Insert figure 2 about here> 

Implementations of the fixed mix rule could also lead to successful leverage. Figure 4 illustrates 

levered portfolios of buy-and-hold and fixed mix portfolios constructed in two different domains. 

In the figure, (A) compares efficient frontiers of buy-and-hold and fixed mix portfolios, which 

are constructed with six traditional assets (S&P 500, EAFE, Lehman long-term bond index, 

Strips, NAREIT, and Goldman Sachs commodity index) and four alternative assets (hedge fund 

index, managed futures index, Tremont long-short equity index and currency index) [14]. Both 

are equally weighted and levered up to 100% via t-bill rate. While the buy-and-hold portfolio is 

not rebalanced, monthly rebalancing rule is adopted for the fixed mix for the entire sample 

period (1994~2005). Also, (B) in Figure 4 depicts results from portfolios of industry-level 

momentum strategies across international stock markets for 27-year sample period (1980~2006) 
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[15]. Momentum strategies are constructed in five non-overlapping regions (U.S., E.U., Europe 

except E.U., Japan, and Asia except Japan), and aggregated into equally weighted portfolios with 

leverage up to 100%. Similar to the previous case, the fixed mix portfolio is rebalanced monthly. 

In both cases, the efficient frontiers from the fixed mix dominate ones from the buy-and-hold.  

<Insert figure 3 about here> 

 

IMPLEMENTATION ISSUES 

The fixed mix rule is now becoming a norm in various financial domains. For instance, it is now 

commonplace for large pension plans, such as TIAA-CREF, to automatically rebalance client-

selected portfolios back to client-selected weights, at the client’s requests. Given the 

circumstances, it is imperative to address issues regarding practical implementations. First, since 

the best sources of rebalancing gains are volatile financial instruments with low intra-correlations, 

it is crucial to find a set of relatively independent assets. However, the task is very unlikely to be 

perfectly achieved in the real world. Second, even such a set exists at certain time point, 

correlations could change over time. For instance, it is well-known that stock indices across 

international markets become highly correlated upon serious market distress. Also, one should 

consider transaction costs such as capital gain taxes upon deciding the rebalancing intervals. 

Although frequent rebalancing could lead to investment performance close to the theoretical 

values, it may deteriorate performance due to transaction costs. Careful analysis on this trade-off 

is required. Good references regarding practical implementations of the fixed mix rules include 

[16-19]. 
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FIGURES AND CAPTIONS 
Figure 1: Effects of Volatility (σ) and Correlation (ρ) to Rebalancing Gains (n = 5) 
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Figure 2: Log Prices of S&P 500 and S&P EWI during July 2003 to December 2006 
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Figure 3: Efficient Frontiers of Levered Buy-and-Hold and Fixed Mix Portfolios 

                 
(A) mix of traditional and alternative assets (1994-2005)                        (B) mix of momentum strategies of 5 regions (1980-2006) 
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